National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Computational Analysis Of Dynamic Behaviour Of Journal Bearings
Rak, Vladimír ; Kamenický, Ján (referee) ; Pochylý, František (referee) ; Zapoměl, Jaroslav (referee) ; Malenovský, Eduard (advisor)
This work deals with computational modelling of static and dynamic analyses of journal bearings, with analyses of stability of oil-film motion and analyses of response of the rotor assemblies. At our workplace a new theoretical approach to the modelling of the static and dynamic behaviour of the rigid rotating body in liquid is used. The approach is based on the application of the Navier-Stokes motion eq., equation of continuity and boundary conditions eqs. It is possible to separate the motion of the rigid body and liquid from each other using suitable transformation relations and then it is also possible to separate the stationary and nonstationary motions from each other. A method of control volumes is used for these analyses. The real Bézier body is used for the description of the geometrical configuration and also for the approximation of velocity and pressure functions. Combined the ALE (Arbitrary Lagrange-Euler) method is used, because it´s necessary to generate a new net (to perform new meshing) for a change of the shaft position. The additional effects of the liquid (additional mass, stiffness and damping), which we solved in dynamic analysis, are the function of the single parameter only – the shaft-centre position. There is a large advantage in comparison with the standard approach, which is based on application of the Reynolds liquid eq. Author solving the models of the long and short journal bearing with different geometry, especially the elliptical and cylindrical bearings, with incompressible and compressible journal bearing liquid. If the journal bearing problem is solved, it is possible to include the additional effect of the liquid to the right side of the motion equation of a model rotor assembly. Author analyze a model rotor assemblies with two degrees of freedom, which is supported inside of the two journal bearings on the ends of the rotor (Jeffcott rotor assembly). Author modelling and solveing a response of the model rotor assembly on the forced steady-state vibrations, which was actuating by the unbalanced matter.
Computational Analysis Of Dynamic Behaviour Of Journal Bearings
Rak, Vladimír ; Kamenický, Ján (referee) ; Zapoměl, Jaroslav (referee) ; Pochylý, František (referee) ; Malenovský, Eduard (advisor)
This work deals with computational modelling of static and dynamic analyses of journal bearings, with analyses of stability of oil-film motion and analyses of response of the rotor assemblies. At our workplace a new theoretical approach to the modelling of the static and dynamic behaviour of the rigid rotating body in liquid is used. The approach is based on the application of the Navier-Stokes motion eq., equation of continuity and boundary conditions eqs. It is possible to separate the motion of the rigid body and liquid from each other using suitable transformation relations and then it is also possible to separate the stationary and nonstationary motions from each other. A method of control volumes is used for these analyses. The real Bézier body is used for the description of the geometrical configuration and also for the approximation of velocity and pressure functions. Combined the ALE (Arbitrary Lagrange-Euler) method is used, because it´s necessary to generate a new net (to perform new meshing) for a change of the shaft position. The additional effects of the liquid (additional mass, stiffness and damping), which we solved in dynamic analysis, are the function of the single parameter only – the shaft-centre position. There is a large advantage in comparison with the standard approach, which is based on application of the Reynolds liquid eq. Author solving the models of the long and short journal bearing with different geometry, especially the elliptical and cylindrical bearings, with incompressible and compressible journal bearing liquid. If the journal bearing problem is solved, it is possible to include the additional effect of the liquid to the right side of the motion equation of a model rotor assembly. Author analyze a model rotor assemblies with two degrees of freedom, which is supported inside of the two journal bearings on the ends of the rotor (Jeffcott rotor assembly). Author modelling and solveing a response of the model rotor assembly on the forced steady-state vibrations, which was actuating by the unbalanced matter.
Computational Analysis Of Dynamic Behaviour Of Journal Bearings
Rak, Vladimír ; Kamenický, Ján (referee) ; Pochylý, František (referee) ; Zapoměl, Jaroslav (referee) ; Malenovský, Eduard (advisor)
This work deals with computational modelling of static and dynamic analyses of journal bearings, with analyses of stability of oil-film motion and analyses of response of the rotor assemblies. At our workplace a new theoretical approach to the modelling of the static and dynamic behaviour of the rigid rotating body in liquid is used. The approach is based on the application of the Navier-Stokes motion eq., equation of continuity and boundary conditions eqs. It is possible to separate the motion of the rigid body and liquid from each other using suitable transformation relations and then it is also possible to separate the stationary and nonstationary motions from each other. A method of control volumes is used for these analyses. The real Bézier body is used for the description of the geometrical configuration and also for the approximation of velocity and pressure functions. Combined the ALE (Arbitrary Lagrange-Euler) method is used, because it´s necessary to generate a new net (to perform new meshing) for a change of the shaft position. The additional effects of the liquid (additional mass, stiffness and damping), which we solved in dynamic analysis, are the function of the single parameter only – the shaft-centre position. There is a large advantage in comparison with the standard approach, which is based on application of the Reynolds liquid eq. Author solving the models of the long and short journal bearing with different geometry, especially the elliptical and cylindrical bearings, with incompressible and compressible journal bearing liquid. If the journal bearing problem is solved, it is possible to include the additional effect of the liquid to the right side of the motion equation of a model rotor assembly. Author analyze a model rotor assemblies with two degrees of freedom, which is supported inside of the two journal bearings on the ends of the rotor (Jeffcott rotor assembly). Author modelling and solveing a response of the model rotor assembly on the forced steady-state vibrations, which was actuating by the unbalanced matter.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.